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Targeting in chaotic scattering
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~Received 18 September 1997; revised manuscript received 11 December 1997!

We consider a Hamiltonian system model with an orbit that is stabilized on an unstable periodic orbit
embedded in an unstable chaotic set. We then attempt by means of a small control to target a position outside
the original chaotic invariant set. This work illustrates how this can be accomplished using the example of the
chaotic scattering set resulting from billiard-type motion in the presence of three hard circular disks.
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I. INTRODUCTION

A. Targeting

The inherent exponential sensitivity of chaotic time ev
lutions to perturbations is the hallmark of chaotic system
This sensitivity can be exploited in direct trajectories to so
desired final state by the use of a carefully chosen sequ
of small perturbations to some control parameters@1#. These
perturbations can be so small that they do not significa
change the system dynamics, but enable the intrinsic sys
dynamics to drive the trajectory to the desired final sta
This process has been calledtargeting. Targeting in chaotic
dynamical systems has received much attention in re
years @2–9#. Since in chaotic systems small perturbatio
eventually produce large effects, the objective is to fi
methods that allow one to decide when and how judiciou
chosen perturbations should be applied in order to ach
the desired effect.

In this area, one significant result was achieved with
spacecraft International Cometary Explorer~ICE! @10#. The
spacecraft International Sun-Earth Explorer 3~ISEE-3! was
launched on August 12, 1978, with the purpose of inve
gating the solar-terrestrial relationship at the outerm
boundaries of the Earth’s magnetosphere. It was parked i
elliptical halo orbit about the Lagrange libration point L
where it continuously monitored changes in the near-Ea
interplanetary medium.~Dynamically, L1 is an unstable
fixed point in the Earth-moon system in a rotating frame
which the Earth and moon are stationary.! In 1982 it was
suggested that this spacecraft could be used to explore
comet Halley and the newly discovered Giacobini-Zinn
comet, which were both then entering the solar system. H
ever, there was only a relatively small amount of propell
in the spacecraft, and it was not initially clear that this wou
be sufficient. Nevertheless, a feasible orbit was eventu
found. A maneuver was conducted on June 10, 1982, to
move the spacecraft from the parked orbit around the
point and place it in a transfer orbit involving a series
passages around the Earth and the moon. After fifteen s
propulsive maneuvers and five lunar flybys, the spacec
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ISEE-3, then renamed ICE, was transferred to a heliocen
orbit on December 22, 1983. As planned, ICE traversed
tail of comet Giacobini-Zinner on September 11, 1986, a
also approached the comet Halley in late March 1986,
coming the first spacecraft to directly investigate two com
@11#. We emphasize that the existence of the successful o
is a result of the instability of the L1 parked location, and
the inherent instability caused by the chaotic character of
restricted three body problem: the spacecraft motion in
presence of the Earth and the moon.

In the present paper, motivated by the ICE achievem
we consider a paradigmatic situation of targeting. Our goa
to provide a targeting method that can be applied to a Ham
tonian system initially stabilized on an unstable periodic
bit embedded in a chaotic set. For our system, the chaotic
is a hyperbolic chaotic saddle, in which case we find t
targeting can be very fast and efficiently achieved.

Since hyperbolic Hamiltonian chaotic sets have been
tensively studied in the context of a chaotic scattering,
method will be shown in that context.

This article is organized as follows. In the next subsect
we briefly review the concepts concerning chaotic scatter
In the subsequent subsection we situate our method in r
tion to other known methods. A model problem of a chao
scattering is introduced in Sec. II. Our targeting method
described in Sec. III. The results from applying it to th
proposed examples are presented in Sec. IV. A general
cussion is given in Sec. V.

B. Chaotic scattering

As discussed below, chaotic scattering is characterized
‘‘sensitive dependence’’ of output variables that character
the particle trajectory after the scattering to small change
an input variable that characterizes the trajectory before s
tering @12#. This phenomenon has received much attent
because many fundamental physical situations are of
type @3,13–17#. In general, scattering refers to a situatio
where the system motion is initially simple, then enters
scattering region where the motion can be more complica
and then leaves the scattering region, again resuming sim
motion @18#.

We say that the scattering function~i.e., the output as a
function of the input! is singular at a particular value of the
input variable if any interval containing that input value pr
5337 © 1998 The American Physical Society
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5338 57ELBERT E. N. MACAU
duces output variable values in a nonzero range that doe
approach zero as the size of the input interval approac
zero. Thus two inputs that arearbitrarily close to a singular
value can produce very different outputs. When the se
singular input variables is uncountable, and occurs on a C
tor set, we call the situation chaotic scattering, and we
that there is sensitive dependence of the output to sm
changes in the input.

The dynamics of scattering in a hyperbolic chaotic situ
tion can be explained by the existence of a saddle cha
invariant set@19#, formed by the intersection of its stable an
unstable manifolds, where the stable and unstable manif
each consist of a Cantor set of roughly parallel surfac
When a particle enters a scattering region close to the st
manifold, it stays near the saddle chaotic set for some ti
and then escapes following a path close to the unstable m
fold. The closer it initially is to the stable manifold, the mo
time it spends in the scattering region. If the initial conditi
of the particle is precisely on the stable manifold, the parti
stays in the scattering region forever, and small deviati
from this situation can lead to wild variations of the outp
@12,16,19–23#.

One fundamental aspect of chaotic invariant sets is
they are typically permeated by an infinite dense set of
stable periodic orbits. Here we consider an orbit that is s
bilized on one of these unstable periodic orbits. We use
terwards the term ‘‘parked’’ to describe this situation. In
particular, we envision that the system has somehow b
brought to the vicinity of the desired parking orbit, which
then stabilized by application of a small control, as in t
method proposed by Lai, Tel, and Grebogi@7,8#. After being
maintained in this unstable orbit, we assume that it beco
desirable to target some particular region of phase sp
This scenario was, in fact, carried out, as we have alre
mentioned, by the ISEE-3 spacecraft in achieving its enco
ter with the comets Giacobini-Zinner and Halley. The r
verse scenario, where we are interested in steering a tra
tory from outside a scattering region to one of the previou
mentioned unstable periodic orbits, will also be conside
here.

These scenarios appear in many significant applicatio
In celestial mechanics, besides the guidance of a space
nearby two heavy bodies that are moving in Keppler ellip
around their center of mass~restricted three body problem!
@24,25#, Petit and He´non@17# investigated an interesting situ
ation. They analyzed the case of two small bodies mov
around a very heavy mass. When close encounters happ
complicated motion can take place, in a situation that can
described by chaotic scattering. Consequently we can en
age the use of a targeting method to guide these satel
Analogously, in particle accelerators, electromagnetic w
generators, and plasma physics, chaotic scattering happe
many situations as a result of the interaction between ch
particles and electromagnetic fields@26,27#. After the inter-
action, a target method can be used to direct the trajector
the particles to a specific region of the space. Also, cha
scattering happens in many chemical reactions@28,29#. Even
the simplest case of the reaction between two atoms boun
in a molecule with a third atom can be considered as a th
body problem, where small differences in the interactio
between them imply different results. Furthermore,
not
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chemical reactions are usually made of a sequence of in
mediate complexes of a finite average lifetime@30#. A target
method can be used to accelerate the speed of reaction
stabilize intermediate results.

Next we address the issue of the applicability of previo
developed target method to the situation of chaotic scat
ing.

C. Targeting in chaotic scattering

The idea of using the exponential sensitivity of a chao
system to tiny perturbations to rapidly direct a system to
desired accessible state, i.e., targeting, was introduced
Shinbrotet al. @9#. In their work they described a method o
targeting that conceptually can be applied to any chaotic s
tem. This method is as follows: consider, in the phase sp
a small regionr s around a source points, and another smal
regionr t around the target pointt. The objective is to find a
point ps interior tor s that belongs to a trajectory in the pha
space that goes fromps to a pointpt , which is interior tor t .
To find ps , the regionr s is iterated in the forward direction
while the regionr t is iterated in the backward direction unt
these iterated regions intersect each other in the phase s
When the intersection is found, the regionsr s and r t are
partitioned and the partitions, which implied, after the ite
tions, the intersection, are identified. This process is repe
with partitions progressively small, until the determination
ps andpt . The pointps is then used to determine the valu
of the perturbation that must be applied to the system
direct it to ps . As the system is inps , it will evolve follow-
ing its own dynamics until it reachespt .

While this method works very well for dissipative sy
tems, in general it is not suitable for chaotic scattering. C
otic scattering is a situation of transient chaos, where
chaotic set is nonattractive, and, so, almost all initial con
tions escape from the chaotic set except for a set of mea
zero. To apply the Shinbrot method what is really iterated
a set of discrete points that represent the partition of
region around the source and the target points. Howeve
these points are iterated, almost all of them escape from
chaotic region. So, to find an eventual intersection of itera
regions, the points that represent the partition of the reg
around the source and targeting must be continuously re
fined, to keep their iterations inside the scattering region
fact, the accomplishment of this job requires an elabor
and computationally intensive procedure@31#. As the num-
ber of iterations is increased, for forward iterations, on
points continuously close to the stable manifold will st
inside the scattering region; for backward iterations, o
points close to the unstable manifold will stay inside t
scattering region. Furthermore, suppose that this process
carried out and, as a result, the intersection of two itera
regions was found. Shinbrot’s method applies a procedur
successive approximations to the solution by using a p
gressively small partition of the interval around source a
target points. If the eventual solution is located very near
stable manifold, what will happen is that between any t
points of the partition, no matter how close to each oth
they are, the system will present a very high sensitive dep
dence on initial conditions. This means that getting the so
tion point by using this process of successive approximati
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57 5339TARGETING IN CHAOTIC SCATTERING
will be very difficult. The fact is that although this metho
can work in some situations, in general it will not work pro
erly, besides the intensive calculation required to implem
it.

For chaotic Hamiltonian systems, Laiet al. @7# proposed a
method that can be used to stabilize trajectories in the ne
borhood of some desired unstable periodic orbit~‘‘control of
chaos’’! by using small perturbation. In subsequent wo
Lai et al. @8# showed that the same method could be app
to a situation of chaotic scattering, even for nonhyperbo
chaotic scattering, where Kolmogorov-Arnold-Moser su
faces coexist with chaotic invariant sets. However, the
thors stressed that the major problem about control of cha
scattering was to bring the trajectories inside the reg
where their method of control could be applied~‘‘control-
lable region’’!. This is because the chaotic set is nonattr
tive so there is just a finite probability that a trajectory th
starts from a random chosen initial condition in the pha
space gets inside the ‘‘controllable’’ region. Thus, the co
trol of chaotic scattering can only be efficient if it operat
connected with a targeting method.

In general, targeting in chaotic Hamiltonian systems is
easy to accomplish. Besides the coexistence of interwo
chaotic and quasiperiodic regions, the phase space is div
into layered components that are separated from each o
by Cantori @32#. Typically, a trajectory initialized in one
layer of the chaotic region wanders in that layer for a lo
period of time before it crosses the Cantori and wander
the next layer. Bollt and Meiss proposed a method of targ
ing that can work even if source and target are located
different layers. They use the fact that long trajectories i
compact phase space are recurrent. Thus, they first ident
‘‘slow’’ orbit that reaches the small region around the targ
Then, in this orbit they identify all the recurrent ‘‘loops.
Using small perturbation, they try to find patches that s
the recurrent loops. This method, usually, significantly
duces the transport time, as they exemplify by using it to fi
a ‘‘chaotic Earth-moon transfer orbit that requires 38% le
total velocity boost than a comparable Hohman transfer
bit’’ @5#.

In a situation of chaotic scattering this method could
applied if finding a ‘‘slow’’ orbit that goes from the sourc
point to the desired region around the target point were e
In fact, finding such an orbit is very difficult and comput
tionally intensive because the chaotic set is nonattrac
@31#, and almost all initial conditions escape from the sc
tering region, except a set of measure zero. For the s
reason, it is even more difficult to find a long orbit that go
from the source to the target. Thus, this method would no
appropriate in chaotic scattering cases.

In this paper we introduce a targeting method that is s
nificantly different from the ones previously mentioned.
was envisaged for the situation of hyperbolic chaotic scat
ing. The goal is to use a small perturbation to drive a traj
tory from an unstable periodic orbit located inside the sc
tering region to a target point outside the scattering region
fact, as the systems that we are interested in have time
versal symmetry, the trajectory that goes from the unsta
periodic orbit to an outside point can be used in the ba
ward direction. Thus, our method can be used in associa
with Lai’s method of control of chaos to drive and stabili
nt
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in an unstable periodic orbit trajectories that come from o
side the scattering region.

The method takes explicit advantage of the sensitive
pendence on initial conditions. It finds, from an ensemble
trajectories that departs from the targeting point and head
the scattering region, the trajectory that passes closest to
unstable periodic orbit. Then, by using time reversal symm
try, this trajectory is used as a reference trajectory in orde
construct, by using small perturbation, a solution traject
that departs from the unstable periodic orbit and goes to
target region.

In the following sections we introduce an example of t
chaotic scattering set resulting from billiard type motion
the presence of three hard circular disks, describe
method, show how it can be applied to the proposed
ample, and present the results.

II. THE MODEL PROBLEM

We consider the two-dimensional billiard model that
schematically shown in Fig. 1. This system has been ex
sively studied@13,16,18,23,33#, and consists of three circula
hard disks, each of radiusR, whose centers are located on th
vertices of an equilateral triangle, of side lengthL.2R. Par-
ticles move in straight lines between perfectly elastic co
sions with the disks, and with the angle of incidence equa
the angle of reflection at each collision.

We consider this system with the following paramete
R51.8, L54.0, and the circles located at the vertices of t
triangle whose coordinates are (0,0), (2,2A3), and (4,0).
Furthermore, we consider a particle initially bouncing b
tween disksC1 and C2 along the unstable periodic orb
located on the segment of the line joining the centers of th
circles, as shown in Fig. 1. We say that the particle is i

FIG. 1. Geometry of the problem. The disks are located at
vertices of an equilateral triangle with sideL. P is the point to be
targeted.s and f are related to the surface of section that w
defined for the problem.
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5340 57ELBERT E. N. MACAU
tially ‘‘parked’’ on this orbit. Our objective is to target, from
this unstable orbit, a pointP located outside the three-dis
region. That is, by applyingsmall perturbing controls we
wish to direct the motion of the particle so that it hits t
point P. For our example, we arbitrarily chooseP to be at
the position (8.0,4.0).

In what follows we find it convenient to introduce a su
face of section that corresponds to the surfaces of the t
disks. We parametrize the location of a point on the surf
of section by an arclength variables. The arclength variable
s is measured in the counterclockwise sense, starting in e
disk in the position corresponding to the point of the leasy
coordinate. It is defined such that thes interval @0,1/3# be-
longs to the first disk,@1/3,2/3# to the second, and@2/3,1# to
the third disk~see Fig. 1!. ~Thus, for example,s increasing
from 1/3 to 2/3 takes a point initially located at the positi
labeled 1/3 in Fig. 1 and moves it counterclockwise arou
disk C2 until it comes back to the starting point ats51/3.!
Furthermore, we also introducet5cosf, where f is the
angle between the incident direction at impact and the
ward ~counterclockwise! tangent.

Using this coordinate system, we will denote byf the map
that transforms the point (sn ,tn), associated with thenth
collision of a particle with a disk, to the point (sn11 ,tn11),
associated with the next collision with a disk, i.e
f : (sn ,tn)→(sn11 ,tn11). @The inset in Fig. 1 shows the
(s,t) surface of section.# Note that for some (s,t) the subse-
quent orbit never again collides with a disk. In that case
say thatf (s,t) is undefined. When this occurs we think
the orbit as having escaped from the scattering region. A
note that there are discontinuities in the map at the posit
s50,1/3,2/3,1.

Poonet al. @33# have numerically estimated the stable a
unstable manifold of this map and concluded that the inv
ant chaotic set is hyperbolic. Dinget al. @21,22# have gotten
similar results in an analogous situation. We represent a
jectory that starts at a pointA and after m subsequent
bounces, hits a pointB as a sequence ofm points (s1 ,t1),
(s2 ,t2), . . . (sm ,tm) in the surface of section, wheret i
5cosfi . Because of the time reversal symmetry, we have
associated ‘‘inverse’’ trajectory that starts atB and goes to
A, defined also bym points (s18 ,t18), (s28 ,t28),...(sm8 ,tm8 ),
where t i85cosfi8 . These coordinates are related
follows: s185sm , s285sm21 ,..., sm8 5s1; t1852tm , t28
52tm21, . . . , tm8 52t1. The latter relation holds because th
anglef8 in the backward direction is related to the anglef
at the same positions by f85p2f, and thus cos(f8)
52cos(f).

III. TARGETING

Let CU1, with coordinates (su1 ,tu1), wheretu15cosfu1
50, be the point of the parked unstable periodic orbit loca
on the diskC1, and let CU2, with coordinates (su2 ,tu2),
where tu25cosfu250, be the point of the parked unstab
periodic orbit located on the diskC2. Our aim is to find a
‘‘small’’ perturbation d so that if this number is added t
fu1 or ~exclusive! to fu2, the particle leaves the unstab
periodic orbit, bouncesÑs times with the disks, and eventu
ally hits the target pointP. ~Mechanically we can think ofd
ee
e

ch
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r-

e
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a-

n

d

as resulting from a small impulsive thrust applied at the ti
of impact.!

Starting atP we randomly choose a large number of in
tial trajectory angles. We set a numberN and retain those
initial angles that lead to trajectories (si ,t i) that escape from
the scattering region afterN or more bounces with the disks
For N reasonably large the initial point (s1 ,t1) of such an
orbit is located near the stable manifold@19#. From these
trajectories, we select the one that comes closest to one o
surface of section parked orbit pointsCu1 or Cu2. Let Nr
>N denote the number of bounces of this selected trajec
with the disks, and (si ,t i) for i 5r * <Nr denote the point of
this trajectory in the surface of section that comes closes
the parked orbit. If we take this selected trajectory and obt
its time inverse, we have what we shall call thereference
trajectory. That is, a trajectory that comes near the park
orbit, and escapes from the scattering region by followin
path that passes throughP. ~Recall that to get the points o
the time inverse trajectory in the surface of section we
place eacht i by 2t i , and reverse the time sequence of t
points.!

The reference trajectory, represented in the surface of
tion, is a sequence of ordered points (si ,t i). If we imagine a
particle following this trajectory, (sNr

,tNr
) represents the las

bounce of the particle with the disks before the particle
capes from the scattering region, following a trajectory th
passes throughP. The point of this trajectory that come
closest to the parked orbit in the surface of section is deno
(sr m

,t r m
) with r m5Nr2r * 11. We denote by (su

*
,tu

*
),

where tu
*
5cosfu

*
, the point on the parked orbit that i

nearest the point (sr m
,t r m

) of the reference trajectory.@Thus

(su
*
,tu

*
) is eitherCu1 or Cu2.#

The general situation of two orbits that come close to o
another is depicted in Fig. 2, where an arbitrary surface
section was defined. There we can see the trajectoriesXi and
Yi , which have the pointsXj andYk as the respective posi
tion where the orbits come closest to each other.

For a hyperbolic situation, associated to each point on
invariant set there is a stable and an unstable manifold.
introduce at the positionYk1ns

a small perturbationb̂eb

whereeb is a unit vector in the direction of the perturbatio

FIG. 2. Two trajectories that come close to each other.
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57 5341TARGETING IN CHAOTIC SCATTERING
~see Fig. 3!, and iterate this perturbed pointns times back-
ward in time. This will typically generate a nearby trajecto
that will deviate progressively from the original trajectory
each backward iteration, expanding away fromY along the
direction of the stable manifold at the points on the orbitY
@4,5#. ~We assume that the direction of the small perturbat
b̂eb is not precisely such that it has no component in
stable direction.! We also introduce a small perturbationd̂ed
to the orbitX at the timej 2nu whereed is a unit vector in
the direction of the perturbation~see Fig. 3!, and iterate this
perturbed point forward in timenu iterates. This will typi-
cally generate a nearby trajectory that will deviate progr
sively from the original trajectory at each forward iteratio
expanding away fromX along the direction of the unstabl
manifold at the points on the orbitX @4,5#. Consider that we
can find values of the small perturbationsd̂ andb̂ that solve
the equation

f nu~Xj 2nu
1 d̂ed!5 f 2ns~Yk1ns

1b̂eb!. ~1!

This means that we have found a shadow trajectory tha
time j 2nu has a point that isd̂ away fromXj 2nu

and atns

1nu forward iterations in time is ab̂ distance from the poin
Yk1ns

of the trajectoryY. Thus the numbersnu andns must

satisfyns<Nr2k andnu, j . @Note that, sinceeb is not nec-
essarily aligned with the stable manifold atYk1ns

, forward

iterates ofYk1ns
1b̂eb ~if they exist! are expected to diverg

from the trajectoryY.# We will initially be interested in the
case where we associate the trajectoryX with the parked
orbit and the trajectoryY with a trajectory that goes throug
P, i.e., the reference trajectory. In that case, for smallb̂ and
Nr2(k1ns)>0, a sufficiently small perturbation of th
parked orbit to the pointXj 2nu

1 d̂ed will yield an orbit that
approaches the reference trajectory by following the dir
tion of the stable manifold at the points of the referen
trajectory, and thus comes close to the pointP.

The application of this method to our problem is straig
forward. Choosingnu ~the number of iterations in the for
ward direction!, from the fact that the parked orbit is period

FIG. 3. Targeting method, solving ford and b the following
equation:f nu(Xj 2nu

1ded)5 f 2ns(Yk1ns
1beb).
n
e

-
,

at

-
e

-

of period two, and that (su
*
,tu

*
) is the position of the parked

orbit in the surface of section that is closest to the refere
orbit, we can find out if the perturbationd̂ is to be applied at
the point (su1 ,tu1) or (su2 ,tu2). Let us call this point
(sup

,tup
), wheretup

5cosfup
. In the same way, if (sr m

,t r m
) is

the point of the reference trajectory closest to (su
*
,tu

*
), the

point where the perturbationb̂ shall be applied is locatedns
iterations away in the forward direction. We call this poi
(sr p

,t r p
), wheret r p

5cosfrp
.

As previously stated we take the initial perturbation of t
parked orbit to be applied in the angle~as if it were gotten
from an impulsive propellant maneuver!. The equation to be
solved is then

f nu@sup
,cos~fup

1d!#5 f 2ns@sr p
,cos~f r p

1b!#, ~2!

where we have written the map function asf (s,t). The val-
ues chosen for the parametersnu andns have a direct effect
on the order of magnitude ofd andb. In general, as seen in
the next section, largernu andns lead to solutions of Eq.~2!
with smaller values of the perturbationsd andb.

Equation~2! can be solved ford and b by the Newton-
secant method. Let us call (ss ,ts) the point in the surface o
section where the perturbed trajectories intersect each o
Therefore, if we consider a particle parked on the unsta
periodic orbit, and if we apply a perturbationd to the angle
when the particle hits the circle in the position (sup

,tup
), the

particle will escape from the parked orbit, and will approa
the direction of the stable manifold of the points at the r
erence trajectory by following a trajectory~that we call the
solution trajectory!, such that afternu bounces with the
disks, it will be at the point (ss ,ts); after ns more bounces
the trajectory will be at the point@sr p

,cos(frp
1b)#; for sub-

sequent bounces, the particle will closely follow the refe
ence trajectory, and so will escape from the scattering reg
passing close to the target pointP.

We can predict the total number of bounces with t
disks, previously defined asNs , that the solution trajectory
will have. The point (ss ,ts) is in fact very close to the poin
in the surface of section where the parked orbit and the
erence trajectory come closest to each other. After this po
the solution trajectory comes very close to the reference
jectory so that both of them have the same number of
with the disks. By construction, one particle that follows t
reference trajectory, starting at the point (si ,t i) for i 5r m ,
hasNr2r m hits with the disks before leaving the scatterin
region and passes through the target pointP. Therefore, the
total number of hits with the disks of the solution trajecto
Ns can be forecasted by the following equation:

Ns5nu1~Nr2r m!. ~3!

In Eq. ~3!, nu , as a parameter, has its value assign
before we start to follow the targeting procedure. Howev
the values ofNr andr m are just known during the executio
of the targeting procedure. This is so because these num
are associated with a trajectory~the reference trajectory! that
is picked as the one that comes closest to the parked o
from a set of trajectories that start fromP with randomly
chosen departure angles. The only constraints that we k
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in advance for these parameters are thatNr can be any num-
ber equal to or greater thanN, while r m can be any numbe
between 1 andNr . So, by following our procedure we ca
target the pointP, but we can not fulfill, in general, the
requested goal of targeting the pointP with a desirednum-
ber Ñs of bounces with the disks.

However, we can change the procedure to carry out
goal: in the process of finding a reference trajectory from
set of trajectories that depart fromP with a randomly chosen
departure angle, we select the one that escapes from the
tering region afterexactly Nbounces with the disks and tha
comes closestin its middle pointto one of the surface o
section parked orbit pointCu1 or Cu2. By restricting our
choosing criteria, we impose a determination over the val
of Nr and r m .

Introducing these changes to our previous procedure,
have areference trajectorythat hasNr5N bounces with the
disks, and which the point (si ,t i) for i 5r m5N/211 or ~ex-
clusive! i 5r m5N/2 is the one of the trajectory that come
closest to the surface of section parked orbit points. Us
these values ofr m in Eq. ~3! we have

Ns5nu1N/2 or nu1N/221 . ~4!

Equation~4! allows us to assign a proper value forN, for a
fixed value of the parameternu , in order to imply a solution
trajectory that has a specified number of bounces with
disks.

In the next section we will analyze the results that
obtained by using this method.

IV. RESULTS

As an example, we set the goal that we want to target
point P from the ‘‘parked’’ orbitCu12Cu2 previously speci-
fied by using a small perturbationd such that the solution
trajectory has at most 12 (Ñs512) bounces with the disks.

In order to apply our targeting procedure we first need
assign values toN, and to the parametersnu andns . Guided
by Eq. ~4! for Ñs512, we decided to useN515 andnu55.
For the parameterns we used the valuens55.

The next step is to find the reference trajectory, which
trajectory that hasN bounces with the disks, and which th
point (si ,t i) for i 5r m5N/211 or ~exclusive! i 5r m5N/2 is
the one of the trajectories that comes closest to the surfac
section parked orbit points. Using the method that we h
described in the previous section, we got the scenario
can be seen in Fig. 4. This figure shows in the surface
section previously defined the middle point of the trajector
that depart fromP, and have the desired number ofN
bounces inside the scattering region. In this figure the p
tion of the parked orbit is also shown. In fact, this figure c
be considered as an approximate representation of the in
ant set@19#.

Figure 5 shows the reference trajectory. We verify tha
really passes very close to the parked orbit, which is loca
between the disksC1 and C2, on the line connecting thei
centers.

In Fig. 6 we have the evolution of the Newton-seca
method in solving Eq.~2! for the problem. We have gotte
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the following values for the perturbations:d50.91869
31023 andb50.5754331023.

Applying this value ofd to the parked orbit, we have
trajectory that is shown in Fig. 7. The trajectory pass
0.38531022 away from the target, after 12 bounces with t
disks, inside the scattering region. So, we fulfill our goal.

We can understand exactly how the method works
analyzing the ‘‘error curve,’’ i.e., the difference between t
solution trajectory and the reference trajectory in their w
through the scattering region. The initial point of this cur
is taken immediately after the application of the perturbat
d. We consider this curve as it appears in our surface
section. So, the curve will be depicted as an ordered
quence of points (si ,t i), where each point will represent th
difference between the solution trajectory and the refere
trajectory in each hit with the disks.

The error curves appear in Figs. 8~a! and 8~b!, for a spe-
cific case wherens55, nu55, and N522. In the former
figure we have the error in thes coordinate, while in the
latter we have the error in thet coordinate. In both curves
the abscissas represent the successive sequence of hits
the disks.

FIG. 4. Invariant set fromP.

FIG. 5. Reference trajectory.
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The shape of these curves is, in general, the same, i
pendent of the values ofnu , ns , andN: the difference be-
tween the solution trajectory and the reference trajectory
creases exponentially until a minimum point; after this poi
the behavior changes, and the difference between th
curves increases exponentially. So, we have a ‘‘V-shaped’’
curve. What happens is that, because of our targeting pr
dure, the solution trajectory comes exponentially close to
reference trajectory, following the stable manifold of the r
erence trajectory. The position of maximum proximity~mini-
mum distance! is exactly the point of the reference trajecto
used to calculate theb perturbation, according to Eq.~2!. In
Fig. 8, this point appears with abscissasnu1ns510. After
this point, we will have a situation of two trajectories that a
initially close to one another. As the system is chaotic,
distance between the trajectories will increase exponentia
as expected.

This V-shaped curve is important because it suggests
we can choose the values ofnu andns for an usual problem
where we want to target a pointP through a trajectory tha
has no more than a specified number of bounces inside
scattering region: the closer the minimum of theV-shaped

FIG. 6. Findingd andb by using the Newton-secant method.

FIG. 7. Solution trajectory.
e-

e-
,
se

e-
e
-

e
y,

w

he

curve is of the last bounces with the disks, the closer
solution trajectory will be from the desired target pointP.
The position of the minimum can be shifted to the right
increasing the value of eithernu or ns . However, the value
ns has a superior limit. Remembering Eq.~2!, the b pertur-
bation is to be applied in the surface of sectionns points after
the position where the reference trajectory and the par
orbit come closest to each other. This point is located in
reference trajectory, as we have already said,N/2 or N/2
21 positions in the surface of section before the traject
leaves the scattering region. Sons cannot be greater tha
these values. In Fig. 9 we have a typical behavior of
distance from the solution trajectory to the target asns and
nu are increased. As expected, we have a decreasing cu

In addition to implying trajectories that pass successiv
closer to the target point, increasing the values ofnu andns
has another effect. This effect can be seen in the graphic
is showed in Fig. 10: the value of the perturbationd that
must be used to solve the problem decreases whenevernu are
increased.~The same behavior happens forb as a function of

FIG. 8. V curve: error between the reference trajectory and
solution trajectory;~a! in s; ~b! in t.

FIG. 9. The distance from the solution trajectory to the tar
point as the parametersns andnu are changed.
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5344 57ELBERT E. N. MACAU
ns .) In fact, for largeN, after some values ofnu typically we
have for the solution of Eq.~2! values ofd such that the ratio
betweend and the unperturbed angle is just two or thr
orders of magnitude greater than the machine accuracy.

We can overcome this problem by using our target
method several times. This can be done in a very straight
ward way by successively applying Eq.~2! to other points of
the reference trajectory. Thus, consider a situation wherN
is large enough compared withns . Then, we apply our origi-
nal method and find ad1 value. Using thisd1 we will have a
trajectory that leaves the parked orbit and approaches a m
mum distance related to the reference trajectory. Let us
this solution trajectory 1. At any point of this trajectory w
can apply again Eq.~2!, considering that thed2 perturbation
will be applied at this chosen point, which ism iterations
away from the point whered1 was previously applied. In
solving Eq.~2!, we consider that the perturbationb2 will be
applied in a point of the reference trajectory that is alsom
iterations away from the point that was previously used
calculateb1. Using this procedure, we have a solution tr
jectory 2. This procedure can be applied as many times
the length of the reference trajectory allows. The solut
will be a union of partial solutions, which means that spec
perturbation will need to be applied in specific points of t
solution trajectory.

Figure 11 shows the result of the application of this p
cedure. There we compare the effect of applying the tar
ing procedure once, twice, and three times. In all cases
first d is applied in accordance with our original targetin
procedure, i.e., in one of the points of the unstable par
orbit. After the application of the firstd, otherd, when used,
are applied,ns positions spaced from each other in the so
tion trajectory as it appears in the surface of section. T
overall effect of the utilization of severald ’s is to move the
minimum point of theV-shaped curve further away. It mean
that the solution trajectory continues to approach the re
ence trajectory, until the minimum point. Also, if we com
pare this minimum value with the one that happens when
target procedure is applied just once, the former is typical
few order of magnitude smaller than the latter.

In addition to increasing the value of the perturbatio

FIG. 10. Perturbationd used to get the solution trajectory as th
parameternu is changed.
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that need to be applied to get the target point~as can be seen
in Fig. 12!, the use of our targeting method several tim
produces another important result. Consider a situa
where there are nonideal effects as noise, state measure
error, and an imperfect determination of the system para
eters. If we try to get the targeting by applying the targ
method just once, the influence of these nonideal effects
be to increase the value of the minimum of theV-shaped
curve. As a consequence, the error between the solution
jectory and the reference trajectory can be so large that
solution trajectory passes far from the target point. By t
geting several times, although the effect of increasing
minimum level of theV-shaped curve is still present, th
procedure becomes strikingly more robust. This is becaus
each time the perturbation is applied we have a kind of
jectory correction that keeps the solution in the direction
the target. In Fig. 13 we have a typical curve, where we c
see that the targeting procedure works well even for a no
of standard deviation equal to 1025. Note that this is a high

FIG. 11. V curve: error between the reference trajectory and
solution trajectory when the target algorithm is used once, t
times, and three times;~a! in s; ~b! in t.

FIG. 12. Values of the perturbationsd ’s when the target algo-
rithm is applied more than once.
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57 5345TARGETING IN CHAOTIC SCATTERING
level of noise for the case of chaotic scattering, where
have an extremely high sensitivity to small changes~the per-
turbations that are applied to steer the solution are typic
of 1023).

The final issue that must be addressed is concerning
quantification of the distance in the surface of section
tween the middle point of the reference trajectory and
parked orbit so that our targeting method works. This qu
tion is relevant because the reference trajectory is found
using a set of random selected trajectories that depart f
the target pointP. Figure 14 shows how the distance fro
the middle point of the reference trajectory to the park
orbit points affects the distance from the solution traject
to the target pointP. From this figure, which is typical, we
can see that after a well defined limit of proximity~about
1024), using reference trajectories closer to the parked o
appears to have no significant effect in improving the pr
imity of the solution trajectory to the target pointP.

V. CONCLUSION

We have presented a method that allows us to targ
point outside a scattering region from any unstable perio
orbit located inside the scattering region. Despite the f
that we have illustrated the method by using an exam
where the parked orbit was one of period two, we can ea
deal with any unstable periodic orbit without significa
changes. In fact, we expect the method outlined here to b
general use for a class of targeting situations where i
desirable to start from a situation where the system is par

FIG. 13. The distance from the solution trajectory to the tar
point as the noise level is increased.
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on an unstable periodic orbit embedded in a hyperbolic c
otic invariant set.

As general characteristics of our method we can say
following:

~i! The method is robust enough to deal with nonide
effects~noise, state measurement error, and an imperfect
termination of the system parameters!.

~ii ! The method is flexible enough to be adapted to g
eral situations involving orbits parked in an unstable orbi

~iii ! The perturbation that must be applied to get the tar
position can be adjusted inside a broad range of values.

Furthermore, the method also works in the reverse sit
tion where we want to target an unstable periodic orbit
cated inside the chaotic scattering region departing from
point outside the scattering region. Thus, we can use i
association with the Lai method of control of chaos to ca
ture in periodic orbits any particle sent in the direction of t
scattering region. Besides, this association works even
noisy environment, because the target method can be us
drive trajectories back to the stabilized orbit whenever
noise takes them out from the periodic orbit.
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